$$\begin{aligned} &\{\mathbf{Y}_{3-x}\mathbf{Ca}_x\}\mathbf{Ti}_x\mathbf{Ga}_{5-x}\mathbf{O}_{12} \end{aligned}^{66} \\ &\{\mathbf{Y}_{3-x-y}\mathbf{Ca}_{x+y}\}\mathbf{Zr}_y\mathbf{Ti}_x\mathbf{Fe}_{5-x-y}\mathbf{O}_{12} \end{aligned}^{66} \\ &\{\mathbf{Y}_{3-x-y}\mathbf{Ca}_{x+y}\}\mathbf{Zr}_y\mathbf{Ti}_x\mathbf{Ga}_{5-x-y}\mathbf{O}_{12} \end{aligned}^{66} \\ &\mathbf{See} \enspace \text{also} \enspace 4, \enspace 23, \enspace 24. \end{aligned}$$

17. Zr^{4+} : a and c sites

${\rm [Ca_3][ZrMg](Ge_3)O_{12}}^{43}$	a = 12.514 Å
${\rm Ca_3}[{\rm Zr_2}]({\rm V_{0.5}Ga_{2.5}}){\rm O_{12}}$ 83	12.676
$\{Ca_3\}[Zr_2](V_{0.5}Fe_{2.5})O_{12}^{83}$	12.704
$\{Ca_{2,5}Zr_{0,5}\}[Zr_{2}](Ga_{3})O_{12}$	$12.600^{84}, 12.599^{45}$ Å

(In this case, our powder photograph had some faint extra lines, indicating that the formula of the garnet is not precisely as written.)

$$\begin{aligned} &\{{\rm Y_{3-x}Ca_x}\}[{\rm Zr_xFe_{2-x}}]({\rm Fe_3}){\rm O_{12}}^{\ 7,84} \\ &\{{\rm Gd_{3-x}Ca_x}\}[{\rm Zr_xFe_{2-x}}]({\rm Fe_3}){\rm O_{12}}^{\ 75} \\ &{\rm See \ also} \ 4,\ 23,\ 24,\ 33 \ a,\ 35. \end{aligned}$$

18. Hf⁴⁺: a and c sites

${\rm YCa_2}[{\rm Hf_2}]({\rm Fe_3}){\rm O_{12}}^{84}$	a = 12.670 Å
${\rm Ca_3}[{\rm Hf_2}]({\rm V_{0.5}Ga_{2.5}}){\rm O_{12}}^{83}$	12.652
${\rm Ca_3}[{\rm Hf_2}]({\rm V_{0.5}Fe_{2.5}}){\rm O_{12}}$ 83	12.681
${\rm Ca_{2.5}Hf_{0.5}}[{\rm Hf_2}]({\rm Ga_3}){\rm O_{12}}^{83}$	12.570
See also 23 and 24.	

Group IVA

19. Si^{4+} : d sites only

Many examples are given in Table 3 and elsewhere in this survey. Comments under Si⁴⁺ in the earlier survey 8 have been corrected.

20. Ge⁴⁺: prefers d sites but will enter a sites

Many examples are given in Table 4 and elsewhere in this survey.

Comments under Ge⁴⁺ in the earlier survey 8 have been corrected.

See also Refs. 7 and 97.

21. Sn^{4+} : prefers a sites but enters d sites

In the earlier survey⁸, we gave as an example the distribution of $\mathrm{Sn^{4+}}$ ion in $\mathrm{Ca_3Fe_2Sn_3O_{12}}$. In our first paper on the tin-substituted yttrium iron garnets, we indicated that we did not obtain a single-phase garnet with this composition. In later work ⁸⁵, we were still unable to do so and we believe tentatively that defect structures are indicated. In addition to our studies ^{77,85} of the system, $\{Y_{3-x}\mathrm{Ca}_z\}\mathrm{Fe_{5-x}Sn_xO_{12}}$, some studies ⁸⁶ have been made on the analogous Gd system; lattice constants are not reported, however. Other Sn-containing garnets reported are:

Crystal chemistry of the garnets

$$\begin{array}{lll} \{Ca_3\}Sn_2V_{0.5}Ga_{2.5}O_{12}\ ^{83} & \alpha = 12.589\ \text{\AA} \\ \{Ca_3\}Sn_3Ga_2O_{12} & 12.69\ ^{49},\ 12.685\ ^{45} \\ \end{array}$$

(In this case, our powder photographs contained some faint unidentifiable extra lines, indicating that the formula of this garnet is not precisely as written.)

See also 6, 23, 24.

Group VB

22a. V^{3+} : a sites only (probably)

See Tables 3 and 4.

b. V5+: d sites

${\rm [Ca_3][Fe_2](Fe_{1.5}V_{1.5})O_{12}}^{87}$	a = 12.465 Å
{Ca ₃ }Fe _{3.3} Ge _{0.4} V _{1.3} O ₁₂ 88	12.447
${Ca_3}{Fe_{3.3}Ga_{0.2}V_{1.5}O_{12}}$ 88	12.461
{Ca ₃ }Fe ₃ GeVO ₁₂ 88	12.418
${Ca_3}Fe_3Ga_{0.45}Ge_{0.10}V_{1.45}O_{12}$ 88	12.454

⁵⁵ S. Geller, H. J. Williams, R. C. Sherwood and G. P. Espinosa, On the tin-substituted yttrium iron garnets. J. Physics Chem. Solids 26 (1965) 143–445.

⁸³ B. V. Mill, G. M. Zadneprovskii and V. V. Bakakin, New compounds with garnet-type structure. Izv. Akad. Nauk SSSR, Neorg. Mater. 2 (1966) 1861—1864.

⁸⁴ S. Geller, R. M. Bozorth, C. E. Miller and D. D. Davis, Crystal chemical and magnetic studies of garnet systems $\{YCa_2\}[M_2^{4+}](Fe_3)O_{12}-\{Y_3\}[Fe_2](Fe_3)O_{12}$ M=Zr or Hf. J. Physics Chem. Solids 13 (1960) 28—32.

⁵⁶ K. P. Belov and I. C. Lyubutin, Magnetic properties of the substituted rarnet ferrites of gadolinium and yttrium. Kristallografiya 10 (1965) 351—356; Soviet Physics—Crystallography 10 (1966) 282—286.

⁵⁷ S. Geller, G. P. Espinosa, H. J. Williams, R. C. Sherwood and E. A. Nesbitt, Rare-earth and yttrium-free ferrimagnetic garnet with 493°K Curie temperature. Appl. Physics Letters 3 (1963) 60—61.

⁵⁵ S. Geller, G. P. Espinosa, R. C. Sherwood and H. J. Williams, Additional yttrium-free ferrimagnetic garnets. J. Appl. Physics 36 (1965) 321–322.